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A kinetic equation is derived for the two-time phase space correlation function 
in a dilute classical electron gas in equilibrium. The derivation is based on a 
density expansion of the correlation function and the resummation of the most 
divergent terms in each order in the density. It is formally analogous to the ring 
summation used in the kinetic theory of neutral fluids. The kinetic equation 
obtained is consistent to first order in the plasma parameter and is the 
generalization of the linearized Balescu Guersey-Lenard operator to describe 
spatially inhomogeneous equilibrium fluctuations. The importance of con- 
sistently treating static correlations when deriving a kinetic equation for an elec- 
tron gas is stressed. A systematic derivation as described here is needed for a 
further generalization to a kinetic equation that includes mode-coupling effects. 
This will be presented in a future paper. 

KEY WORDS:  Electron gas; Balescu Guernsey-Lenard kinetic equation; 
time correlation functions. 

1. I N T R O D U C T I O N  

Cluster expansion techniques have been a very powerful tool for studying 
equilibrium time correlation functions in neutral gases at low and moderate 
densities. (1~ Most of the developments in this held are, however, restricted 
to gases with a short-range intermolecular potential. In this and a following 
paper (2) the same methods are employed to study equilibrium time 
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correlation functions in a gas of charged particles interacting through a 
weak long-range potential. Specifically, the case of Coulomb interaction 
will be considered. The strength of the coupling in a Coulomb gas is 
measured in terms of the plasma parameter, ep, representing the ratio of 
potential to kinetic energy, or equivalently, the number of particles in the 
Debye sphere, i.e., ep -- (4~zn2~) 1. Here n is the number density, e the elec- 
tron charge, and ~.D= (4rcne2~) -1/2, with T= (kB/~) 1 the temperature, is 
the Debye shielding length, which measures the effective range of the 
interaction. For small values of the plasma parameter the decay of 
equilibrium fluctuations in an electron gas is described by the linearized 
Baleseu-Guernsey-Lenard (BGL) kinetic equation, which takes into 
account effective two-body collisions and is in this sense analogous to the 
Boltzmann equation for neutral gases. The spatially homogeneous BGL 
equation was first obtained in its nonlinear form by Balescu (3~ (and, 
independently, by Lenard and also by Guernsey) using a nonequilibrium 
cluster expansion method. 

The linear BGL equation can be generalized in two directions. First, it 
is of interest to obtain an inhomogeneous form of the BGL equation to 
describe spatially varying equilibrium fluctuations. Secondly, in order to 
describe moderately dense, instead of dilute, electron gases one needs to 
derive higher-order plasma parameter corrections to the BGL equation and 
take into-account additional collective effects not contained in the BGL 
operator itself. 

In this paper a systematic derivation of the linearized BGL kinetic 
equation for spatially inhomogeneous equilibrium fluctuations is presented. 
The derivation is based on a detailed analysis of the cluster expansion of 
the exact N-particle collision operator (in the spirit of Balescu's first 
derivation) and employs the techniques developed in the theory of neutral 
fluids. (1~ The approximations introduced are well controlled and the 
method can be extended to yield corrections to the linear BGL equation 
that include hydrodynamic mode-coupling effects. This will be done in a 
subsequent publication./2) 

The need of a careful derivation of the linearized BGL equation as a 
starting point for its generalization is one of the motivations of the present 
work. The calculation has, however, also intrinsic interest, since it 
illustrates the importance of consistently treating static correlations when 
deriving a kinetic equation for an inhomogeneous electron gas. 

The problem of a systematic derivation of the linearized BGL equation 
for equilibrium time correlation functions using cluster expansion methods 
has been considered before by Bartis and Oppenheim (4) for the spatially 
homogeneous case. They considered a gas with an intermolecular potential 
consisting of a weak long-range part and a strong short-range part, and 
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neglected all terms explicitly containing equilibrium correlations. For the 
spatially homogeneous case considered there these terms do not contribute 
to the leading part of the density expansion of the transport coefficients, 
whose evaluation was the objective of the paper. The procedure of Bartis 
and Oppenheim is, however, not suitable for constructing a generalized 
BGL equation describing spatially inhomogeneous equilibrium correlations 
nor is it suitable for deriving corrections to the BGL operator (2~ itself even 
for the homogeneous case. In both cases a systematic analysis of static 
correlations as well as of dynamical events is needed. This will be discussed 
in detail below and elsewhere. I2/ 

A generalized spatially inhomogeneous BGL equation has been 
obtained before by truncation of the BBGKY hierarchy. (s6~ The hierarchy 
method gives the correct form of the generalized BGL operator. In 
addition, it generates "singular" corrections to the Vlasov operator (i.e., 
corrections that are as divergent as the Vlasov operator itself at large inter- 
particle separation) and terms that have the form of initial condition 
corrections. In Ref. 6 both such correction terms were neglected on the 
grounds of their ordering in the plasma parameter. By discussing in detail 
the connection between the hierarchy and the cluster expansion method, 
where such terms do not appear, we are able to show that they are con- 
sistently canceled in the hierarchy formulation as well. 

Finally, formal kinetic equations for Coulomb fluids have been 
obtained by employing the so-called algebraic methods, ~7-9~ originated by 
Lebowitz, Percus, and Sykes for neutral gases. (1~ These approaches lead to 
an exact but formal kinetic equation for the time correlation function of 
interest, containing a formal expression for the collision operator. By 
assuming an analytic expansion in powers of the plasma parameter the 
collision kernel can, however, be evaluated explicitly to the lowest order. 
The resulting kinetic equation is, for long-time and large distances, iden- 
tical to that obtained here [see Eqs. (3.13a) and (3.15)]. 

The algebraic methods have been implemented in the literature by 
introducing simple approximations to the collision kernel (disconnected 
approximation, effective interaction approximation). (79) These have 
yielded predictions for the dynamical properties of dense Coulomb liquids 
that compare well with the results of computer experiments. 4 When such 
approximate collision operators are evaluated to leading order in the 
plasma parameter, the result obtained here is again recovered. In this sense, 
our calculation provides an independent check for such methods. The 
approximations mentioned above fail, however, to predict correctly a cer- 
tain type of plasma parameter corrections to the BGL operator, that is, 

4 For  a review see Ref. 11. 
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those containing mode-coupling effects, that are responsible for the 
asymptotic slow long-time decay of the correlation functions. Our method, 
on the contrary, is based on a systematic expansion in a small parameter 
and appears well suited to analyze such corrections to the BGL operator 
and obtain a consistent theory of mode-coupling effects in an electron gas. 
This will be discussed in a following paper. (2) 

The technique used to derive the BGL equation in this paper is 
motivated by the structure of the cluster expansion in neutral fluids. There 
it is known that such a naive expansion is not well defined: each term of 
the expansion beyond the first two terms contains a contribution that 
diverges in the long-time limit. The leading divergences are due to a special 
class of dynamical events containing certain sequences of s binary collisions 
among s particles, known as ring collisions. Owing to the expansion in the 
density, such collisions are allowed to take place over arbitrarly long times 
and the collective effect of a mean free path damping of the particle trajec- 
tories in these sequences due to the other particles is not taken into 
account. To include this effect and obtain a well-behaved collision operator 
it is necessary to carry out a resummation of all the most divergent terms 
in each order in the density. (1) 

It is expected that similar difficulties will appear in systems with weak 
long-range interactions. (12) Furthermore, in this case, owing to the long 
range of the potential, additional divergences are encountered already in 
the density expansion of the equilibrium properties. In equilibrium a well- 
defined expansion is obtained by resumming the most divergent terms in 
each order in the density, as was first shown by Mayer. ~ In first 
approximation this leads to the same results as the phenomenological 
Debye-Hfickel theory. Again, the divergences in the equilibrium density 
expansion indicate that a collective effect, here the screening of the 
Coulomb interaction at large distances, is not properly taken into account 
by the density expansion. 

In the nonequilibrium cluster expansion for systems with long-range 
forces, divergences of both a dynamical (as in neutral fluids) and a static 
(as in equilibrium) origin appear. A resummation is needed to remove both 
types of singular behavior. In this paper the case of a weak long-ranged 
potential is considered and only divergences associated with small angle 
scattering at large interparticle separation are discussed. The effects of the 
strong short-range part of the interaction potential are not considered 
here.(4,14) 

The central quantity of interest here is the two-time time correlation 
function of phase space fluctuations, C(lt; 1'), from which all the relevant 
two-particle time correlation functions may be obtained. The objective is to 
derive a closed kinetic equation for C(lt; 1'), i.e., identify a well-behaved 
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collision operator that governs the long time evolution of 'C( l t ;  1') for 
small ep. In Section 2 the quantities of interest are defined and the cluster 
expansion of ~3C(lt; l')/Ot is outlined. The rearrangements needed to 
eliminate the divergences in this "naive density expansion" and the 
resulting new cluster expansion for C(lt; 1') are also discussed there. In 
Section 3 the first few terms in this new cluster expansion are analyzed and 
a criterion to identify the class of most divergent collision sequences in each 
order in the density is given. A resummation of these most divergent con- 
tributions is carried out. As a result, a generalized BGL operator is iden- 
tified and discussed. In Section 4 the connection with the BBGKY 
hierarchy method is discussed. A consistent truncation of the hierarchy is 
performed, that leads to an equation that is identical to that obtained from 
the cluster expansion. Finally, the results obtained in this paper, as well as 
some open questions, are discussed in Section 5. 

2. THE CLUSTER EXPANSION 

The system considered is the classical electron gas, i.e., a gas of N elec- 
trons of charge e and mass m, immersed in a uniform neutralizing 
background. The gas is enclosed in a volume (2 and is in equilibrium at 
temperature T. 

All the two-particle time correlation functions of interest may be 
expressed in terms of the time correlation function of phase space fluc- 
tuations, defined as 

c( lt; I ')= (64'(1, t) 64'(1', o)) 

= lira fdxU64'(1, t)64'(l',O)p(x N) (2.1) 
N,(2  ~ cc 
N/(2 -- n 

where 6~,(1, t) represents the fluctuation in the single particle phase space 
density, 4'(1, t), 

64,(1, 0=4'(1, t ) -  (g,(1, t)) (2.2) 

and 4'(1, t) is the number of particles at the field point 1 = x l  = (rl, vl) in 
the six-dimensional single particle phase space at time t, given by 

N 

4'(1, t ) =  ~ 6(1-X~(t))  (2.3) 
i - - ]  

H e r e  X N =  X 1 ,..., X N denotes the phase of the N electrons 1, 2 ..... N, with 
X i = (Ri, Vi), and Xi(t) is the phase of the ith particle at time t as evolved 
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from its initial value, X~ = X,.(0). Only the dependence on the field variable 
is indicated explicitly in the function ~(1, t). The angular brackets indicate 
an average over the canonical probability density, p(xN). The average 
value of ~(1, t) in Eq. (2.2) is the single-particle distribution function 
characterizing the average number of particles at the point 1, 

f , (1 )  = ($(1 ,  t ) )  = ($(1 ,  0 ) )  (2.4) 

For a system in equilibrium, in the absence of external fields, fl(1) is 
independent of position and time and is simply given by 

f l ( 1 )  = nq~(Vl) (2 .5)  

where r (mfl/27c) 3/2 exp(-mflv2/2) is the Maxwell velocity distribution 
function, and n = N/s is the number density. The time evolution of any 
phase function A(X N) is governed by the N-particle streaming operator 
St(xN), according to 

A(J(N(I))  = S t ( X  N) A ( X  N) (2.6) 

The streaming operator may be formally written as 

S t ( X  N) : e tb(xN) (2.7) 

where L(X N) is the N-particle Liouville operator, defined as 

L(X N) = { , H(XN)} (2.8) 

Here the curly brackets denote the Poisson brackets with the Hamiltonian 
of the system, H(XN), 

H(xN)= ~mV~ + ~ V(Ro. ) (2.9) 
i=1 i < j = l  

where R• = [R i -  Rjt. The interaction among the electrons is the Coulomb 
interaction, V(R) = e2/R. Most of the formal manipulations hold, however, 
for a general central long-range pair potential. For systems with a con- 
tinuous and differentiable intermolecular potential the Liouville operator is 
given by 

N N 
L(X N) = ~ Lo(X,)- ~, O,j (2.10) 

i= i i<j= I 
with 

0 
Lo(Xi) = Vi" ic~R-- (2.1 la) 

O0=O(Xi, Xj)=I c3V(Rij) ( c~ 0 ) (2.11b) 
m OR i OVCi O-Vj 
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Making use of Eq. (2.6) and of the invariance of equilibrium averages 
under time translation, it is convenient to rewrite Eq. (2.1) more explicitly 
as follows: 

C(lt; 1')= f dXN60(1, O) S_t(X N) p(X N) 60(1', 0) (2.12) 

where here and in the following the thermodynamic limit of the integral is 
intended. 

The objective now is to obtain a kinetic equation for C(lt; 1'). In par- 
ticular, we are interested in determining the long time (t~>rc, with rc a 
characteristic collision time 5) and large distance ( I ra -  r'l] ~>2D) behavior of 
the two-point correlation function, C(lt; 1'). It is convenient to use as the 
starting point an expression for ~?C(1 t; l')/0t that is easily obtained by dif- 
ferentiating Eq. (2.12) with respect to time, 

C(lt; 1') = - f dXNN(~(1 - -  X 1 ) L(X ~v) S t(X N) p(X N) g0(1 t 0) 
c~t 

= -Lo(1 ) C(lt; 1') + N ( N -  1) 

x ~dXU-10(1X2) S ,(1Xu-1)p(1X u ' )30(1' ,0)  (2.13a) 
J 

to be solved with the initial condition 

c(1, t=o; 1')= c(1; 1') (2.13b) 

where C(1; l') is the equal time correlation function [cf. Eq. (2.12)]. The 
time evolution of C(lt; 1') may be studied by performing a cluster expan- 
sion of the second term on the right-hand side of Eq. (2.13), following 
closely the procedure employed by Dorfman and Cohen for neutral 
fluids. (1~ In the rest of this section the cluster expansion of Eq. (2.13) is per- 
formed. This is done in two steps: (1) by expanding the N-particle stream- 
ing operator in terms of Ursell cluster functions; (2) by performing a den- 
sity expansion of the equilibrium correlation functions. The resulting 
expansion for 0C(lt; l')/Ot, known as the "naive density expansion," tends 
to diverge term by term in the long-time limit. This divergence, however, is 
not the crucial one and will be shown to be easily removed by a suitable 
resummation. 

5 The concept of collision time is well defined even for a Coulomb gas, where % can be a 
posteriori identified with the inverse of the characteristic collision frequency associated with 
the BGL operator. 
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The cluster expansion of the N-particle streaming operator is 
N 

S t(X N) ~- Ut(X1, J~2) S-t(  XN 2) _~ E Ut(Xl, X2 I Xi) S t(X N 3) 
i-3 

+ • U,(X,, X2 I Yi, Xj) S ,(X N 4) + ... (2.14) 
3~i<j~N 

The explicit form of the operators Ut(XI, X2 I X3 ..... Xs) is easily obtained 
by inverting the set of equations resulting from letting N = 2 ,  3 .... in 
Eq. (2.14). They are given by 

Ut(X1, X2) = S t(Xl, X2) 

Ut(XI, X2 I X3) = S t(Xl,  X2, X3) - S t ( X 1 ,  X2) S t(X3) (2.15) 

etc. Inserting the cluster expansion (2.14) into Eq. (2.13) and making use of 
Liouville's theorem, the following expansion for c~C(lt; l')/#t is obtained: 

O 
C(lt; 1 ' )=  -L0(1 ) C(lt; 1') 

1 
+ ~ (s -2)! f dXz'"dX~.O(1, X2) 

s = 2 

x U,(1, X2 I X3,..., Xs)/,.(1, X2,..., X~; 1') (2.16) 

In Eq. (2.16) all the particle variables Xi, for i = 2 ,  3,..., s, are integrated 
over and no longer need to be distinguished from the field variables. In the 
following, when no confusion can arise, we will use for convenience the 
same notation for the particle variables as for the field variables. 

The functions I~, can be expressed in terms of the equilibrium dis- 
tribution functions of the electron gas. The first few I, are given by 

I2(12; 1 ' )= (1 +P~2)f~(2)C(1; 1 ' )+ C(12; 1') 

13(123; i ' )  = (1 + P12 ~- P13)f2(23) C(1; 1') + (1 + P~3 + P23) fl(3) C(12; 1') 

+ C(123; 1') (2.17) 

etc., where Po is a permutation operator that interchanges the labels of par- 
ticles i and j, and the C(1,..., s; 1') are the equal time correlation functions 
of the phase space densities defined by 

C(1,..., s; 1 ' )=  (c~0(1 ..... s) 60(1 ' ) )  (2.18) 

where 
0(1 ..... s) = • 6(1 - Xi,)"" 6(s -  Xi,) (2.19) 

l~<il< "-" <is~N 
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In Eqs. 
functions, defined as 

f~(X1,..., Xs )=(N_s ) !  dXs+l ""dXNp(X N) 

=n"qb(V~)"'~(V,) gs(R1 ..... R,) 

(2.17) the f,(1,...,s) are the equilibrium reduced distribution 

(2.20) 

where g, is the configurational part of the distribution function. The 
corresponding cluster functions G~.(1 ..... s) are also needed in the following. 
The latter are defined in terms of the f ,  in the usual way, i.e., 

f l (1)  = f l ( 1 )  

.f~(12) = f l (1 ) f l (2 )  + Gall2) 

f3(123) = f~(1)J~(Z)f~(3) + (1 + P12 + P13)fl(1) G2(23) 

+ G3(123 ) (2.21c) 

(2.21a) 

(2.21b) 

etc., where 

G,(X1 ,..., Xs) = nS(~( V 1 )''" ~}(Vs) hs(RI ,..., Rs) (2.22) 

and h, is the configurational part of the cluster function. The equal time 
correlation functions C( l,..., s; l') can be expressed in terms of the 
equilibrium distribution functions as 

C(1; 1') = c5(1 -- l ' ) J ; (1)  + G2(1, 1') (2.23a) 

C(12; 1 ' )=  (1 + P12) 6(1 - 1') G2(1, 1') + G3(1, 2, 1') (2.23b) 

etc. 
In order to obtain an expansion of the right-hand side of Eq. (2.16) in 

powers of the density n, it is now necessary to perform a density expansion 
of the equilibrium distribution functions contained in the I s. Before doing 
this it is, however, convenient to put Eq. (2.16) in a slightly different form. 
As previously stated, the objective here is to derive a kinetic equation for 
C(lt; 1') and identify the kinetic operator that governs its long-time 
evolution from the initial condition C(1; 1'). It is then useful to introduce 
the initial condition C(1; 1') explicitly on the right-hand side of Eq. (2.16) 
by defining an inverse operator C-1(1; 1') as 

f d l ' C  1(1; 1" )C( I ' ;  1 ' ) = 6 ( 1 -  1') (2.24) 
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The solution for C-1(1; 1') is 

1 
C- ' (1;  1') = f - ~  8((1 - 1 ' ) - c ( I r , -  r'll) 

where c(r) is the direct correlation function, defined 
Ornstein-Zernike equation, 

(2.25) 

through the 

c(r12 ) = h2(r12 ) - n  f dr3h2(rl3 ) c(r32 ) (2.26) 

and h2(r) is the pair correlation function, defined by Eqs. (2.21b) and 
(2.22) for s=2 .  Inserting Eq, (2.24) into Eq. (2.16), the latter may be 
rewritten 

where 

C(lt; 1 ')= -L0(1 ) C(lt; 1') 

1 f d2.. .  ds012 
+ ~ ( s -2 ) !  s = 2  

x g,(1, 2 I 3,..., s) W,(1,..., s) C(1; 1') (2.27) 

W~(1, . . . , s )=fdl"fdl '"Is(1, . . . , s ; l")C 1(1"; 1") Pl.v,, (2.28) 

acts as an integral operator on functions of 1. The equilibrium distribution 
functions appearing in W s may now be expanded in powers of the density 
by using the well-known density expansion of the equilibrium distribution 
functions. The density expansion of the operators W s is obtained in Appen- 
dix A, with the result 

w,(1,..., s)=n" -1 ~ n'W~'~(1,..., s) (2.29) 
/ = 0  

with 

W[.~ s) = ~ Pli~(v2)'. .~(v,) g~~ 1,..., r,) (2.30) 
i = 1  

Here g~0) is the configurational part of the s-particle distribution function to 
lowest order in the density, given in Eq. (A3); for l>~ 1 the coefficients W~ t~ 
have the form 

W~Z~(1,..., s) = f d(s + 1 )"" d(s + l) W~Z)(1,..., s I s + 1 ..... s + l) (2.31) 
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and are given in Appendix A for l =  2, 3. When Eq. (2.29) is inserted into 
Eq. (2.27) a formal density expansion of ~?C(lt; l')/~t is obtained. Because 
of the occurrence of time convolutions, it is more convenient for the follow- 
ing discussion to analyze the Laplace transform of C(lt;  1'), defined 

C(lz; 1 ' )=  dt e-z'C(lt; 1') (2.32) 

for Rez > 0. In particular, we will be interested in the behavior of C(lz; 1') 
as z--* 0 + Equation (2.27) may then be written 

[z+Lo(1)]C(lz;l')=[l+ ~, n" ls~,~(lz)~C(1;l') (2.33) 
s = 2 

where 

d 2 ( l z )  = d2012Uz(12 ) W(2~ (2.34a) 

~r = f d2d30,2{Uz(1213) W(3~ Uz(12) W(a~)(12 I 3)} (2.34b) 

d4( lz)  = 1  f d2d3d4012[U~(12134) W(4~ 

+ 2Uz(12 I 3) W~3~)(123 I 4)+2U~(12)  W~22)(12 I 34)] (2.34c) 

etc. Here Uz(1213""s) is the Laplace transform of U, (1213. - . s ) .  
Equation (2.33) has the desired form of a cluster expansion of the kinetic 
operator governing the z dependence of C(lz; 1'). It cannot, however, be 
used to determine the small-z behavior of C(lz; 1') since it contains 
divergences as z - * 0  +. An analysis of the right-hand side of Eq. (2.33) 
reveals that each ~ diverges as z ~ 0 + and that the most divergent con- 
tributions to .J~ come from sequences of s - 1  uncorrelated binary 
collisions among s particles, leading to a z ( ' -  ~) divergence. Here, as 
elsewhere in this paper, z ~ stands for a behavior ~ ln  z. These divergences 
are precisely the same that appear in the cluster expansion of the collision 
operator for neutral fluids, u) As in that case they can be eliminated by 
using an inversion procedure due to Zwanzig. (15) First, Eq. (2.33) is rewrit- 
ten 

Go(1, z ) +  n"-lGo(1, z)~C~(lz) C(lz; I ' ) = C ( 1 ;  1') (2.35) 
s = 2  

where Go(l, z) is the free particle propagator, 

Go(l, z ) =  [ z + L o ( 1 ) ] - I  (2.36) 

822/41,'1-2-4 
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Then, a new set of collision operators B+ is defined by introducing the den- 
sity expansion of the inverse operator on the left-hand side of Eq. (2.35), 
i.e., 

G0(1, z) + nS-~sgs(lz) = Gol(1, z) - nS-lB+(lz) (2.37) 
s=2 s = 2  

This leads to the following kinetic equation for C(lz; 1'): 

[ z + L 0 ( 1 ) -  ~. n s 1Bs(lz)]C(lz;l')=C(1;l' ) (2.38) 
s=2 

The operators B s are easily obtained by equating terms of equal order in 
the density on the two sides of Eq. (2.37), with the result 

B2= zgzGol(1, z) (2.39a) 

B 3 = { d  3 -- ]-~2] 2 } Go'(1, z) (2.39b) 

B 4 =  { d 4 -  ~ 3 d 2 -  ~'2~3-}- [-~/2] 2 } G o l ( 1 ,  z) (2.39C) 

etc. The operators Bs may be written in a more convenient form by making 
use of Liouville's theorem and of operator identities given in Ref. 1, with 
the restilt 

B2(1, z )=f  d20~2G(12, z) W(2~ Go1(1, z) (2.40a) 

l" 
B3(1, z )=  J d2d3012 G(12, z)[(1 + P12) 013G(123, z) W~~ 

- W(2~ 013G(13, z) W(2~ + W(21>(12 I 3)] Go-l(1, Z) 

etc., where G(1.. .s ,  z) is an s-particle propagator, 

G(1.. .s ,z)=[z+L(1. . .s)]  I 

(2.40b) 

The collision sequences that lead to the leading small z divergence of d s do 
not appear in the B,. In the diagrammatic language introduced in the next 
section such dynamical events correspond to singly connected diagrams 
that are canceled in Bs, where only irreducible diagrams appear. It will, 
however, be shown in the next section that the Bs still contain small z 
divergences. A resummation of such divergences is needed to identify a 
well-defined collision operator for z-+0 +. This then leads to the 
generalized BGL kinetic operator. 

(2.41) 
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3. D E R I V A T I O N  OF T H E  I N H O M O G E N E O U S  BGL E Q U A T I O N  
V IA  C L U S T E R  E X P A N S I O N  

As discussed in the Introduction, two kind of divergences are expected 
to appear in the analysis of the collision operators B, for a system with 
long-range forces: divergences of static origin associated with the long 
range of the potential, as already present in the equilibrium density expan- 
sion, and divergences associated with a class of dynamical processes, 
analogous to those appearing in neutral fluids. An appropriate resum- 
mation will be necessary to remove both these divergences. 

Here only the case of a weak long-range potential is considered and 
only dynamical divergences associated with small angle scattering processes 
at large interparticle separation will be discussed. 

In this section the first few collision operators B, are examined in some 
detail. To carry out this analysis, the right-hand side of Eqs. (2.40) is 
expanded in the strength of the potential. This is suggested by the similar 
potential expansion used when eliminating the divergences in the density 
expansion of the equilibrium properties of the electron gas. (13/ The expan- 
sion in the potential strength is obtained as follows: 

l. The Mayer functions appearing in the cluster expansion of the 
static correlations W~ (cf. Appendix A) are expanded in powers of 
[-~V(r)]. 

2. The propagators G s ( l ' " s , z )  in Eqs. (2.40) are expanded in 
powers of 0(/, by making repeated use of the operator identity, 

G(1. . .s ,z)=Go(1. . .s ,z)+Go(1. . .s ,z)  ~ Oo.G(1...s,z ) (3.t) 
i ~ i <  j ~ s  

where G0(1,..., s, z) = [z + Z~= 1 Lo(i) ] - 1 is the free s-particle propagator. 
The interaction between two electrons governed by the operator 00 

will in the following be referred to as a weak binary collision, to be con- 
trasted with the strong binary collision between two particles interacting 
through a strong short-range potential, for instance, hard spheres. A 
collision is defined here as strong when the velocities of the colliding pair of 
particles are correlated at the end of the collision, weak otherwise. A binary 
collision will lead to velocity correlations when the action of the binary 
collision operator for particles 1 and 2 on a function of v 1 results in a 
function not only of vi, but also of the relative velocity v12. This is the case 
in a hard sphere collision. In contrast, the action of 012 on a function of vl 
always leads to a function of vl only. Since the action of the operator 0~ 
does not result in velocity correlations, the corresponding binary process is 
classified as a weak collision. We will argue in the following that the kernel 
of the BGL operator can be interpreted as describing an effective strong 
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binary collision between electrons, in analogy to the Boltzmann operator 
for neutral gases. 

In order to analyze the B s and classify their leading divergences, it is 
convenient to introduce a Fourier representation. In such a representation 
the free-particle propagators G0(1,..., s, z) are simply functions instead of 
operators. Owing to the translational invariance of the equilibrium 
averages, the Fourier transform of C(lz; 1') is defined 

Ck(V~, z; Vv) = f dril,e ik"H'C(lz; 1') (3.2) 

w h e r e  r , 1 ,  ~ r 1 -- rl,. 
From Eq. (2.38), the following equation for Ck(V~, Z; Vl,) is obtained: 

where 

+ ik. v , -  ckl , l ,  z; v, )=  CklV,; v,,) 
s = 2  

(3.3) 

B~k(V 1, z) = f drip, e i k  .rlrBs(1Z) eik .rll ~ (3.4) 

The expansion of the operators Bsk in the strength of the potential will 
now be analyzed in some detail. There are two sources of divergences in 
such an expansion in the limit of z ~ 0 and k-~ 0: 

(1) Divergences arise in the limit k ~ 0, for fixed z, due to the long 
range of the potential. The same behavior is already present in the 
equilibrium density expansion. 

(2) Another type of divergence, associated with purely dynamical 
effects, appears in the limit z ~ 0 + and k --* 0, due to the singular behavior 
of the free-particle propagator in such a limit. In general both (1) and (2) 
occur in each term of the potential expansion of the Bsk. 

In the following the potential expansion of B2 and B 3 will be examined 
explicitly. This will indicate how to formulate a general rule to extract the 
terms that are most divergent in the limit z ~ 0 + in each order in the den- 
sity. The resummation of the leading divergences is then carried out in two 
steps: first the static divergences are removed by a resummation that 
upgrades the divergent static pair correlation functions to convergent 
Debye-Hiickel pair correlation functions; secondly, the dynamical 
divergences are resummed by renormalizing the flee-particle propagators. 
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Specifically, the potential expansion of B2k leads to 

rtB2k(Vl, z) Ck(Vl, z; v'l) 

=.k(Vl)Ck(V1,Z;V1,)_}_nfdu f ~dq 0q(u 1 , v2 ) 

1 
x {0 ~(v~, v~)+ O_~(v~, v~) 

z + i ( k - q ) ' v l  + iq 'v2  

-~ [Ok -q(V1, V2) + Ok q(Vl, V2)] PI2} @(/)2) Ck(V1, Z; V'l) 

-]- ,v/ f dy 2 f ~ 0q(u v2)[-_ fin k q] P12~(/)2)Ck(V1, z; V'1) 
tz~r) 

+ L.D.T. (3.5) 

where L.D.T. stands for less divergent terms, and 

with ~q 
given by 

4~e 2 
Vq= dre 'q'rV(r)= q2 

In Eq. (3.5) 0q is a function, given by 

0q(Vl, V2)= --@-I(Vl) ~b 1(/)2) 0q(vl, v2) ~(/)1) @(/)2) 

flgq �9 v12 

0q(Vl,V2)=fdrl2e iq r'20(1,2) 

=--m eq. ~v1 &2 (3.6) 

= iqVq. Here Vq is the Fourier transform of the Coulomb potential, 

(3.7) 

(3.8) 

It is proportional to the rate of change in kinetic energy of a pair of par- 
ticles in a weak collision and it arises when shifting static correlation 
functions through the propagators, since the kinetic energy is not a conser- 
ved quantity in a collision. In general, in the representation used here for 
every term classified as most divergent (and therefore retained) in the 
expansion of each Bsk, there is an identical term with the first (from the 
right) interaction operator 0q replaced by the function 0q, as seen in 
Eq. (3.5). The terms containing the function 0q are as divergent as the 
corresponding terms containing the operator 0q and should therefore be 
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kept in a consistent theory. We will, however, show in the following that 
their contribution to the collision operator vanishes in the limit z ~ 0 § in 
which limit we are ultimately interested. 

The first term on the right-hand side of Eq. (3.5) is the Vlasov 
operator, (17) which represents the average effect on a given electron due to 
the presence of the other particles. It is given by 

f ,  

~ ( v l )  = n J dv2~k �9 ~-~v ' ~b(vi) P12 (3.9a) 

or, in real space, 

~/(1)=n f d2012(l + P12)O(v2)=n f d2012P120(v2) (3.9b) 

The second equality follows, because the part without permutation 
operator on the right-hand side of Eq. (3.9b) vanishes when acting on a 
function of 1, due to the r2 integration. When acting on the unknown 
function Ck(V1, 2"; V1, ) the Vlasov operator gives 

~(v~) Ck(v~,z;Vx,) n ~ f = - - g k '  ~b(Vx) dv2Ck(vz, z;vv). (3.9c) 
m 

Thus ~UkCk is directly related to density fluctuations, since 
S dv2 S dv~,Ck(v2, t; vv) is the Laplace transform of the density density 
correlation function. The Vlasov operator is instantaneous, i.e., z indepen- 
dent, and is the most singular one in the limit k ~ 0, since it behaves as 
cop/k)~z~rt/k, where cop is the plasma frequency COp= (kBT/m)l/2/)co. The 
singular behavior of the Vlasov operator is due to the long range of the 
Coulomb interaction and is an exact property of the electron gas. (18) 

The second term on the right-hand side of Eq. (3.5) represents a 
sequence of two successive weak collisions between the same two particles. 
It is the simplest ring collision event. In the limit z ~ 0 + and k--* 0 the 
integral over the internal wavevector, q, is logarithmically divergent at 
small q, i.e., it is of order n In q or nq ~ This divergence is related to the 
z --* 0 + behavior of the free propagator. 

The criterion adopted here to identify the divergences in the cluster 
expansion is the following: in each order in the density, n, the divergences 
will be classified on the basis of the strength of the small q singularity 
appearing in the internal wave vector integration as z--* 0 + and k ~ 0. In 
B2, for instance, the most divergent terms are those that behave as n In q or 
nq ~ as z ~ 0  + and k ~ 0 .  The second term on the right-hand side of 
Eq. (3.5) is the only most divergent term of order n. 

Finally, the third term on the right-hand side of Eq. (3.5) is instan- 
taneous, i.e., z independent, and related to density fluctuations, as is the 
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Vlasov operator. This term should be consistently neglected compared to 
terms that are divergent in the limit z-* 0 § since it will lead to higher- 
order plasma parameter corrections to the leading long-time behavior of 
the correlation function discussed here. For instance, in the hydrodynamic 
regime the renormalized form 6 of the instantaneous operator in question 
gives plasma parameter corrections to the ideal gas speed of sound. Similar 
corrections can, however, arise from noninstantaneous operators that are 
less divergent in the limit z ~ 0 § and have therefore been neglected. Thus 
in the following we will group instantaneous terms with less divergent ones 
and neglect them. 

It is convenient for the following discussion to introduce a diagram- 
matic representation of the various collision sequences. 

The diagram rules are as follows: 
(1) A diagram consists of vertical lines, horizontal bonds, and 

crosses. The vertical lines are labeled at their bottom with the particle 
labels 1, 2 ..... The velocities of all particles, except the field point velocity 
vl, are integrated over. 

(2) To obtain the diagram corresponding to a given term in an 
equation, the factors as they appear in this term from left to right are 
represented in the diagram from top to bottom, respectively. 

(3) A cross and vertical line segment at the bottom level of the 

diagram ~ k, label the root point, i.e., the velocity vi and the wave vector k 

of the unknown function, Ck(Vl, Z; V'~). 
(4) A cross and a vertical line segment at the top level of the 

diagram, ~ k, label the external velocity and wave vector, i.e., the Fourier 

transform of the field variable 1. 
(5) There is a factor n(k(vi) associated with every label i that is not a 

root point. The Maxwellian factors are all located to the right of all 
operators, i.e., at the bottom of the diagram. 

(6) Horizontal bonds are of two types: (i) static bonds that represent 

(-/~Vq) = . .  ~,,  as obtained from the weak potential expansion of the 

Mayer functions, and drawn as dashed lines; (ii) dynamical bonds or 
0 bonds representing 0q(Vi, v j ) = ~ ,  drawn as wavy lines. 

(7) The vertical positions of the 0 bonds in the diagrams define the 
levels in the diagram. In time language the bottom level corresponds to the 

6 As k ~ O, this instantaneous term contains a logarithmic divergence for small q, due the 
singular behavior of the Coulomb potential for q -~ O. This divergence is removed when the 
factor [ - f l V  k _q] is renormalized to a Debye-Htickel pair pair correlation function. On  the 
contrary, the divergent behavior of the nonins tantaneous  terms persists even after the renor- 
malization of the equilibrium correlation functions. 
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smallest time; an ordered time integration, ~'odtl~',, dt2~2dt3 .... with 
t/> tl >~ t2 >~..., is to be performed over the times of all intermediate levels. 
The same diagrammatic representation is used for equations in time and in 
Laplace language. 

(8) Internal vertical line segments between the diagram levels 

represent free propagation of the particles, i.e., q = e x p ( - i q . v i t ) ,  or 

q~ ~ q , = E z + i q . v l + i . q , . v 2  ] 1 
I 2 

(9) Wave vectors are conserved at each vertex and all internal wave 
vectors are integrated over. 

The collision operators in Eq. (3.6) may be represented then as in 
Fig. 1. The diagrams containing the function 0q have been omitted in 
Fig. 1. They are identical to the last two diagrams, with the bottom 
0q bond replaced by 0q. The first of the diagrams in Fig. 1 represents the 
Vlasov operator ~Uk(Vl). This completes the discussion of B2k. 

A similar analysis may be carried out for B3k. It is easy to see that the 
most divergent terms are those where the internal wave vector integration 
contains a small q divergence of order n2e2/q 2 in the limit z -+0  + and 
k ~ 0. They may be divided into two groups: 

(1) Purely dynamical diagrams, having the structure of ring 
diagrams and representing three collisions among three particles. There are 
eight nonvanishing diagrams of this kind, given by the four diagrams of 
Fig. 2a, plus the same four diagrams with the bottom 0 bond replaced by 0. 

nB~(31 z~;i,)= ~~ 
2 I 2 

+ k'--q .4 + ;--q -4 

I 2 

+ 0 - -  terms + LD.T. 

Fig. 1. The potential expansion of B 2. The first diagram represents the Vlasov operator, 
"//i(v~). 
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(b) 
The most divergent diagrams in B3: (a) purely dynamical ring diagrams; (b) 

diagrams with two interaction bonds and one static bond. 

(2) Three-particle diagrams containing dynamical bonds and one 
static bond. There are eight such diagrams, given by the four diagrams of 
Fig. 2b and the same four diagrams with the bot tom 0 bond replaced by 0. 
These diagrams have a new structure not found in B 2. 

The last two diagrams of Fig. 2b have the structure of corrections to 
the Vlasov operator, since when acting on Ck(Vl, Z; Vl, ) they are related to 
the density-density correlation function. It is, however, easy to show that 
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the sum of these two diagrams together with the corresponding two 
diagrams where the bottom 0q bond has been replaced by the function 0q, 
leads to terms that are less divergent in the limit z--* 0 + and k ~ 0 than 
those retained here. 

All other terms in B3k are less divergent, in the sense that the q 
integration leads to a less singular result at small q when z -~ 0 + and k --* 0. 

A similar systematic analysis can be carried out for the higher-order 
collision operators. This has been done in detail only for B4k and Bsk. We 
have then formulated a rule to collect the most divergent terms in each 
order in the density: the most divergent terms in Bsk are those where the 
internal q integration contains a small q singularity of order n ( n e 2 / q 2 )  s in 
the limit z ~ 0 + and k ~ 0. 

These terms are represented by the following diagrams: 
(1) All diagrams containing s dynamical bonds 0q and no static 

potential bonds. These correspond to sequences of s weak binary collisions 
among s particles. They have the same structure as the dynamical ring 
events that determine the leading correction to the Boltzmann equation for 
neutral gases. There the binary collisions are, however, strong collisions. 

(2) All diagrams containing ( s - k )  interaction bonds 0ij and k static 
potential bonds, for k = 1, 2 ..... s - 2. 

We emphasize that, in contrast to the case of a gas with strong short- 
range forces, terms containing static correlations are among the most 
divergent contributions in each order in the density. They are needed for a 
complete cancellation of all the terms represented by singly connected 
diagrams and they will appear explicitly in the kinetic equation for the elec- 
tron gas, even to lowest order in the plasma parameter, ~p. 

The resummation of these terms can be carried out in two steps. 
First the purely static divergences are eliminated by resumming the 

chain Mayer graphs, as done in the equilibrium virial expansion. To exam- 
plify this, we display such resummation for the collision sequence 
corresponding to the first diagram in Fig. 2b, i.e., 

~fdv~fdv~f dq Oq(V 1 V2) 1 0 q(Vl,V3) 
' z + i ( k - q ) ' v l + i q ' v 2  

{f }/ X ~a n dv4]- -~Vq] r r r Ck(Y1, z; Vl, ) 
l=l 

=n~'a,v ~'av ~" J ,) J dq Oq(V,,VO 1 
z +  i ( k - q ) - v l  + i q ' v 2  

x 0 q(Vl, %) hDn(q) r r Ck(V,, z; Vl, ) (3.10) 
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= + + - ~ - ~  ~ ~ - - ~  ), + �9 �9 �9 

I 2 I 2 i 2 5 I 2 5 4 

Fig. 3. Resummation of the static Mayer functions to a Debye-H/ickel pair correlation. 

The diagrammatic representation of the resummation is displayed in Fig. 3. 
In Eq. (3.10) 

1 ~ 1 1 [--n/~Vq]'-- hDH(q) nz=~ nl+q22~ (3.11) L 

is the Debye-Hiickel pair correlation function, represented in Fig. 3 by a 
thick dashed line. This resummation replaces all the static correlations with 
Debye-Hiickel pair correlation functions, that are finite at large interpar- 
ticle separation. 

The dynamical divergences are eliminated by summing the ring 
diagrams. Again, it is convenient to display this resummation for the sim- 
plest case, where dynamical and static divergences do not appear 
simultaneously. The sum of all ring diagrams can most easily be written in 
real space and reads 

n f d2012Go(12, z)[n(1 + el2) f d3013(1 + PI3)~b(v3) Go( 12, z)] z 
l=0 

X 012(1 "-~ el2) ~(v2) 

= n f d2012G~(12, z) 012(1 + P12) ~b(v2) (3.12a) 

where Gv(12, z) is a two-particle Vlasov propagator, 

G~(12, z )= [z+L~(12) ]  t (3.12b) 

with L,,(12)=Lv(1)+L,,(2), and L~(1)=Lo(1)-U(1) .  
By resumming all the terms from each Bsk that are of order n(ne2/q2) s 

when z-~0 + and k--*0 and using Eqs. (3.10) and (3.12), one obtains the 
desired generalized (inhomogeneous and non-Markoffian) BGL collision 
operator, given by 

Ak(vl, z)=n f dv2 f (~ff)3 Oq(v~, v2) G~(k-q, v,; q, v2; z) 

X {0 q(u u 0" q(u165165165 

~'- ~q k(V2, V1)] P12} ~(v2) (3.13a) 
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where 

Oq(vl, v2) = 0q(vt, %) + n f dv30,1(vl, I/3) hDH(q) ~(/')3) (3.13b) 

or, using Eqs. (3.6), 

0 1 0 
0q(v,, v2) = 1 Sort(q) ~, gq (3.13c) 

m c~v 1 m •v 2 

The function Gq is defined by Eq. (3.13b), with each 0q replaced by a 0q. In 
Eq. (3.13b) SDH(q) is the Debye-Hiickel approximation for the static struc- 
ture factor, S(q), which is defined by 

S(q)= 1 +nh2(q) (3.14a) 

while SDH(q ) is given by 

q22~ 
SDH(q) -- 1 + q2)~, (3.14b) 

The diagrammatic representation of the four terms occurring in Eq. (3.13) 
is given in Fig. 4, where the thick vertical lines denote the renormalized 

I 2 I 2 

+ k-'-~ 

~'_~" k-q )[(k 

I 3 2 

+ O- terms 
Fig. 4. 

+kq ~. 

I 3 2 

Diagrammatic representation of Eq. (3.13). 
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propagators. In writing Eq. (3.13) a new dynamical operator 0 containing 
the static correlations has been defined. 

The corresponding kinetic equation for Ck(VlZ; Vl, ) is then given by 

[z+ik'vl--C#k(vl)--Ak(Vl,Z)] C k ( u  u : C k ( V l  ; u , ) (3.15) 

An explicit representation of Ak(Vl, Z) in the limit k--+ 0 and z--+0 + 
can be obtained following closely the procedure used in Ref. 17 for the 
nonlinear BGL operator in the spatially homogeneous case. The details of 
this reduction are given in Appendix B. In this limit the generalized 
operator obtained here is found to be identical to the linearized and 
Markoffian BGL operator for the homogeneous electron gas used in the 
literature, i.e., 

where 

A0(vl) = lira Ak(Vl, .7) 
k ~ 0  

z ~ 0  + 

7E dq a [v.-I 
-- (~-~)s q" ~v, IO(--q] iqrv,)l 2 f dv2&(q" (vl -v2))  

(0 O~2)(l+P12)fl(v2 ) (3.16a) x q" ~1 

D(q, z )=  1-  f dv 1 ~v fi(v) (3.16b) z+iq .vSq"  

is the plasma dispersion function, defined for Rez > 0. 
The terms containing static bonds in Eq. (3.13) are needed to obtain 

the form given in Eq. (3.16). This point has been noticed before by Krom- 
mes and Oberman. (6) 

The part of the operator Au(Vl, z) containing the function 0 leads to a 
vanishing contribution in the limit z-+0 + and k--+0, because 
~(q'u 0q(u V)---~ 0 [cf. Eq. (3.8)]. It was, however, essential to retain the 
terms containing the function 0, as was argued before when discussing the 
last two diagrams of Fig. 2b. 

4. THE I N H O M O G E N E O U S  LINEARIZED BGL EQUATION 
FROM THE BBGKY H IERARCHY 

Guernsey (5) and Krommes and Oberman (6) have derived a linearized 
BGL equation for an inhomogeneous electron gas by truncating the 
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BBGKY hierarchy at the level of the second hierarchy equation. They 
obtained the following kinetic equation: 

[z+L~(1)--Tl(1, z)-bY/~(s)(1, z)] C(1, z; 1 ')= C(1; 1 ' )+I( lz ;  1') (4.1) 

which differs from Eq. (3.13) in the presence of a Vlasov correction term, 
given by 

3~(s)(f,z)=n(1 + P12) f d3013~(vl)O(v2)hDH(rt2) P13 (4.2a) 

and an initial condition correction term, given by 

1 
I(l, z; 1') = f d2012 z + L~(12) C(12; 1') (4.2b) 

Also A(1, z) differs from the linearized BGL operator obtained from the 
cluster expansion [cf. Eq. (3.13a)] for it does not contain the terms in 
which the operator 0 is replaced by the function 0, i.e., 

71(1, z)=n f d2012 1 z + L~(12)(1 q- P12) 

x [O12+rt f d3013hDH(r23)~(v3)](9(v2) (4.2c) 

The diagrammatic representation of the Fourier transform of Eq. (4.2a) is 
given in Fig. 5: &U (s) contains singly connected diagrams and is as singular 
as the Vlasov operator itself at large distances, since 3Y/~)(vl, z)~n3/2/k for 
z ~ 0 + and k ~ 0. Both operators 3V (~) and I are then neglected in Ref. 6, 
where it is argued that they represent corrections to the Vlasov operator 
and to the initial condition C(1; 1'), respectively. Although this statement is 
correct, the appearance in Eq. (4.1) of singular corrections to the Vlasov 

- ( s )  
8 7 / 7  (~!, z 1= 

[ 2 3 2 1 3 

Fig. 5. Diagrammatic representation of c~K "1~9, Eq. (4.2). 
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operator is somewhat disconcerning. Such terms, if not canceled to higher 
order, could lead to unphysical behavior. 

The objective of this section is to clarify the connection between the 
cluster expansion method, where singular Vlasov corrections never appear, 
and the hierarchy method. We show here that the singular operator ~V (') 
is actually canceled by part of I(1, z; 1'). It is then possible to recover the 
results of the cluster expansion by using a consistent closure of the 
hierarchy. To do this, it is convenient to characterize the various terms 
occurring in the hierarchy by introducing dimensionless variables. Defining 
z* = z/OOp, r* = r/2D and v* = v/v o, with v0 = (mfi)-1/2, dimensionless dis- 
tributions and correlation functions are given by 

q~*(v*) = (v~/n) f , (1)  (4.3a) 

G*(I* ..... s*) = (v3s2~ s ~)/n)G,(1,..., s) (4.3b) 

C*(l* ..... s*; 1 '*)=  (v3o (s+ 112~/n) C(1,..., s; 1') (4.3c) 

C*(I* ..... s*, z*; 1 '*)=  (CgpV~ ('+ 1)2~/n) C(1 ..... s, z; 1') (4.3d) 

where C(1 ..... s, z; 1') is the Laplace transform of the two-time correlation 
function 

C(1 ..... s, t; 1') = @~(1,..., s, t) &9(1', 0 ) )  (4.4) 

In terms of the dimensionless quantities defined above the first two 
equations of the hierarchy for the Laplace transforms of the two time 
equilibrium correlation functions are (the stars on the reduced variables are 
suppressed to simplify the notation): 

l ' ) = C * ( 1 ; l ' ) + e p f d 2 0 * z C * ( 1 2 z ; l ' )  (4.5a) [ z + L * ( 1 ) ]  C*(1, z; 

and 
[ z +  L~*(12)- ep0~2 ] C*(12z; 1 ' )=  C*(12; 1') 

1 
+ ~-s 0"2(1 +P~2)~b*(v2) C*(lz; 1') 

1 f, 
+ ~ (1 + P12) j d30"3(1 + P~3) G~(23) C*(lz; 1') 

where 

+ ep(1 +P12)  f d30*3C*(123z; 1') 

L*(1) =L0(1 ) _ 1  ~*(1) ,  

(4.5b) 
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with 

and 

~1/':~(1 ) ~-- f dNOl~3@*(/A1) e l3  (4.5c) 

01#2 ~-" e2 & l  &2 (4.5d) 

Guernsey (s~ and Krommes and Oberman (6~ truncated Eq. (4.5b) by 
neglecting the term epO*2C*(12z; 1') on the left-hand side of the equation, 
as well as the three particle cluster function epC*(123z; 1') on the right- 
hand side of the equation, consistently ~ with their ordering in the plasma 
parameter. There is no reason at this point to neglect the initial condition 
in the second equation, C*(12; 1'). In fact, we will show that this term can- 
cels the singular Vlasov correction (4.2) on the left-hand side of Eq. (4.1). 
Neglecting the two terms of O(ep) in Eq. (4.5b), solving for C*(12z; 1') and 
substituting in Eq. (4.5a), the following equation for C*(lz; 1') is obtained: 

z+  L*(1)-~-~/~*(1, z ) -~SV(~)*(1 ,  z )+  O(ep 2) C*(lz; 1') 

= C*(1; 1') + epI*(lz; 1') (4.6a) 

with 
1 (. 

I*(lz; 1') = j d20"2 z + L*(12) C*(12; 1') (4.6b) 

Since our objective is to obtain a closed kinetic equation for C*(lz; 1'), we 
need to express the second term on the right-hand side of Eq. (4.6) in terms 
of the unknown function C*(lz; 1'). This can be done by using Eq. (2.24) 
to explicitly introduce the initial condition C*(1; 1') into Eq. (4.6b), i.e., 

1 /. 
gpl*(lz; 1') = ap J d2dl'd30*2 

z+L*(12)  

x C*(12; 1") C* 1(1"; 3) C*(3; 1') (4.7a) 

Using then Eq. (4.6a) to lowest order in ep we can express I*(lz; 1') in 
terms of the unknown function C*(lz; 1') as 

1 (. 
epI*(lz; 1') = ~,p j d2d30*2 

z+L*(12)  

• f d l ' C * ( 1 2 ; l ' ) C *  ~(1";3) 

x [ z+L*(3 ) ]  C*(3z; l ' )+O(ep 2) (4.7b) 
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For consistency, the equal time correlations in Eq. (4.7b) should be 
evaluated to lowest order in the plasma parameter. To this order, it is easy 
to express the equal time correlation functions in Eq. (4.7b) in terms of 
equilibrium distribution functions. Using Eqs. (2.23) and (2.25), together 
with the convolution approximation which is consistent with the 
Debye-Hfickel approximation--for the three-particle cluster function 
h3(rl, r2, r3), given by (19) 

hDH(rl, r2, r3) = hDH(r12 ) hDH(r13) + hDH(rl2 ) hDH(r23) q- hDH(rl3 ) hDH(r32) 

q- r /f  dr4hDH(rl4 ) hDH(F24 ) hDH(r34 ) (4.8) 

one finds 

f d1"c*(12; 1") c*-1(1"; 3) 

= (1 + P12) r h*.(r12) 6(1 - 3) 

+ r r h*H(rl3) h*H(r32) + O(ep) (4.9) 

$ $ with hDH(r12) = n230hDH(r12). 
Substituting Eq. (4.9) into Eq. (4.7b) and writing the inverse 

propagator in Eq. (4.7) as the sum of a free propagator and a Vlasov 
operator, I*(lz; 1') can be rewritten 

8pI*(lz; 1') = -- ~ 6v(s)*(1, z) C*(lz; 1') 

1 ( .  

-[- •p ] d20~2 
z+L*(12) (1 + P~2) r h*H(r~2) 

x [z+Lo(12) C*(lz; 1') 

1 
+ ep J d2d30'~2 

z+L: (12)  r r hgH(r~3) h*H(r32) 

(4.10) • [z+Lo(123)] C*(lz; 1 ')+ O(ep 2) 

When Eq. (4.10) is inserted in Eq. (4.6a), the first term on the right-hand 
side cancels the singular Vlasov correction term in Eq. (4.6a). The other 
two terms in Eq. (4.10) can be rewritten in a more convenient form by 
shifting the inverse free propagators to the left through the static 
correlation functions. This can be done by using the equations of the 
equilibrium hierarchy to lowest order in the plasma parameter. The 

822/'4 / -2-5 
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calculation is tedious, but straightforward and will not be given here. As a 
result, one finds that the second two terms in Eq. (4.10) contain those 
terms contributing to the BGL operator in which the last 0 operator is 
replaced by a 0 function [cf. Eq. (3.13a)]. These contributions were also 
obtained from the cluster expansion. In addition, they also contain terms 
that do not contribute to leading order as z-~ 0 + and k ~ 0 and should 
therefore be neglected. The equation obtained from the hierarchy is then 
identical to that obtained from the cluster expansion. 

In contrast to the hierarchy method, the cluster expansion directly 
provides a closed equation for C(lz; 1'), i.e., an equation that determines 
its evolution from a given initial condition C(1; 1'). This is achieved when 
transforming from Eq. (2.33) to Eq. (2.30) using the standard inversion 
procedure, (15) which eliminates all singly connected diagrams contained in 
the 3~(s~. In the hierarchy truncation, however, only part of the singly con- 
nected diagrams are automatically canceled. Thus, after closing the 
hierarchy, a further rearrangement of the resulting kinetic equation is 
needed to complete the elimination of the naive density divergence. 

It is not clear how the hierarchy method can consistently be extended 
to higher orders in the plasma parameter. It will become increasingly more 
complicated to express the equal time correlation functions arising from the 
initial condition for the higher-order equations of the hierarchy in terms of 
the unknown function and identify that part of the static correlations that 
needs to be kept to construct a consistent kinetic equation for C(lz; 1'). 

Finally, the elimination of the singly connected diagrams and of the 
divergences occurring in the naive density expansion is also automatically 
achieved by using the algebraic methods mentioned in Section 1. (7 9) As 
discussed in the Introduction, such theories do not, however, contain a 
natural small parameter and are therefore not systematic. The cluster 
expansion method is then more reliable since the approximations 
introduced there can in general be better controlled. 

5. D I S C U S S I O N  

We conclude the paper with a number of remarks. 
(1) There is a close formal analogy between the derivation of the 

BGL operator given here for an electron gas in a uniform positive 
background and that of the ring kinetic operator for neutral gases with 
strong short-range interactions. In both cases the collision operator is 
obtained by summing the most divergent contributions due to ring 
collisions and has the structure of two successive binary collisions 
separated by a renormalized propagator that includes the effect of 
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collisional damping in the case of neutral gases and dynamical screening in 
the case of the electron gas. There are, however, important differences. 

(a) In the neutral gas case the ring operator is constructed by sum- 
ming sequences of strong collisions. The intermediate propagator in the 
resulting kinetic operator contains long-lived hydrodynamic fluctuations. 
This is in contrast to the Boltzmann equation which only describes fluc- 

B is the Boltzmann mean free time. tuations with a lifetime ~r~, where r c 
The BGL operator is constructed by sequences of weak collisions. The 
intermediate renormalized propagator contains the effect of dynamical 
screening due to the other particles and, in a gross sense, provides an effec- 
tive cutoff of the Coulomb interaction at large distances. The BGL 
equation describes the decay of fluctuations of lifetime ~ re. In this sense it 
contains the same physical information as the Boltzmann equation. Its ker- 
nel can be interpreted as an effective binary collision operator, representing 
a strong collision. 

(b) Another important difference between neutral and charged gases 
lies in the role played by the static correlation functions. In neutral gases 
they do not contribute to the most divergent collision sequences, while for 
systems with long-range potentials the static correlation functions do con- 
tribute to leading order in the plasma parameter, so that the 
inhomogeneous BGL operator itself explicitly contains the two-particle 
correlation function. This is because the Debye-Hiickel pair correlation 
function, 

GDH(v 2 ~ 1, v2, q)=n2~b(vl) ~(v2) hDn(q) 

is, for small q(q~2D1), of the same order in the density as the single-par- 
ticle distribution function, f1(1)=n~b(Vx), since h o H ( q ) ~ n  ~ [cf. 
Eq. (3.14)]. 

(2) The Markovian form of the BGL collision operator cannot con- 
sistently be used to obtain the hydrodynamic equations for the electron 
gas. In the hydrodynamic regime the electron gas can sustain finite fre- 
quency plasma modes that can only be described through the use of a fre- 
quency-dependent collision operator, to be evaluated at a frequency co, 
with co = iz, of the order of the plasma frequency, cop. To describe long- 
wavelength phenomena in a dilute electron gas one must, however, use the 
k --. 0 limit of the collision operator. This is because its k dependence leads 
to plasma parameter corrections to the dilute gas expressions for the trans- 
port coefficients and the thermodynamic quantities that appear in the 
hydrodynamic equations. These corrections are of the same order in the 
plasma parameter as those resulting from terms that have been neglected in 
our derivation (e.g., less divergent terms in the cluster expansion) and 
should then be ignored. 
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(3) In the Markovian limit, i.e., z ~ 0  +, the same representation for 
the collision operator as given in Eq. (3.16) is obtained when all the terms 
containing the functions 0q are neglected in Eq. (3.13). This is due to the 
fact that the Markovian limit of the BGL operator conserves kinetic 
energy, because of the presence of the 6 function, 6(q'v12), in Eq. (3.16). 

(4) The same method used here may be employed to study the 
problem of tagged particle motion. The quantity of interest is then the 
correlation function of fluctuations of the phase space density of the tagged 
particle, which is defined 

Cs(lt; 1')  = <6(1 - X l ( t ) ) [ 6 ( l t - X 1 )  - < ( ~ ( 1 ' - X 1 ) > 3  > (5.1) 

where Xldenotes here the phase of the tagged particle. Using the cluster 
expansion method, the "selff-BGL equation, describing tagged particle 
motion, is found to be 

[ z + i k ' v 1 - A s k ( v l , z ) ]  Csk(V1,Z;V1,)~--Csk(V1;V1 , ) (5.2a) 

with 

Ask(V1, Z) = n dv 2 0q(vl, v2) 
t z ~ )  z + i (k - q)" vl  + iq" u - -  q(v2) 

x [0q(Vl, v2) + 0q(v,, v2)] ~b(v2) (5.2b) 

A different representation of A s for k = 0 was given in Ref. 4. The two 
representations are identical in the limit z ~ 0 +, where they both reduce to 

7~ 
Aso(Vl)= __~_~ f dq • V~q (V1 __ V2)) 

(-~)3 q ~ v ,  ID(q, Z ~ ' v l ) 1 2 6 ( q  

x q .  &l ~ nO(v2) (5.3) 

(5) Finally, Dorfman and Cohen ~12) have used the methods of the 
nonequilibrium cluster expansion to derive a generalized (inhomogeneous 
and non-Markoffian) form of the nonlinear BGL operator. They showed 
that the nonlinear operator is also obtained by summing ring collisions, as 
done in the homogeneous case by Balescu/3) The linearization of their 
kinetic equation does not, however, reproduce Eq. (3.13) obtained here. It 
contains the linear BGL operator A(1, z) defined in Eq. (4.2c) and the 
singular Vlasov correction as obtained when closing the hierarchy. We will 
discuss the resolution of this point in a separate publication/2~ 
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A P P E N D I X  A: C L U S T E R  E X P A N S I O N  OF T H E  E Q U I L I B R I U M  
C O R R E L A T I O N  F U N C T I O N  

In this Appendix the explicit form of the cluster expansion of the 
14/,(1,..., s), as defined in Eq. (2.28), is obtained. 

The equilibrium virial expansion of the reduced distribution functions 
g,(rt,..., rs) is discussed for example in Ref. 21. It has the form 

g,(rl,... , r s )=  ~ ntg~l)(rl ..... r,) (A1) 
/ = 0  

where 

g~/) (r l , . . . , r s )=fdrs+l""dr ,+tg , (r l  ..... r, I rs+,,..., r,+l) (A2) 

The first term, corresponding to l =  0, is simply given by 

g~~ 1 ..... r~.) = exp [ - f l  ~ V(rij)] 
l<~i<j<~N 

= [ I  (1 +f, j)  (A3) 
l<~i<j<~N 

where f,j = e -~v(r'j)- 1 is the Mayer f function, and for l =  1, 

g~l)(rl ,..., rs) = ~,-(~ 1 , ' " ,  rs) dr,+ 1 ~, 
j = 2  

x 2 fh,,+~ ' "  fij,, +, (A4) 
l ~ < i t <  ' "  <ij<~N 

From Eq. (A1) and the definition of the cluster functions h~ given in 
Eqs. (2.22) the virial expansion of the h, may also be obtained in a similar 
form, i.e., 

h,(r 1 ..... r,) = ~. nth(sO(rl,... , rs) (A5) 
/ = 0  
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The explicit expression for the first few terms in Eq. (A5) for s = 2, 3 may 
again be found in Ref. 21. Finally, the cluster expansion for the direct 
correlation function will be needed. It is given by 

c(r12)---- ~ nlcl(rl, r2) 
l = 0  

oo /,/s 1 

=f~2+ ~3(s_2) ! [  _ ..... rs) (A6) 

where B(rl ..... rs) is the sum of all biconnected graphs of s particles. In par- 
ticular 

B(rl, r 2, r3)=f12f23f3~ (A7) 

In order to construct the equilibrium virial expansin for the Ws, the latter 
need to be expressed entirely in terms of equilibrium distribution functions. 
Combining Eqs. (2.28) and (2.17), the first few Ws are explicitly 

(, 

W2(12) = (1 + P12)f~(2) + j dl"dl"'C(12; 1") 

• C 1(1"; l")P1v, W3(123 ) 

= (1 +P12+P13)f2(23)+ (1 + P13 + P23) f l (3)  

+ f dl'dl"C(12; l ' )  C-1(1";  1") Ply, 

+ f dl'"dl"C(123; 1"') C-1(1";  1") Ply, (AS) 

etc. 
The correlation functions in Eq. (A8) may be expressed in terms of the 

distribution functions by using Eq. (2.23) and (2.26), with the result 

f cll'"c(1 ..... s; v") c - ' ( 1 " ' ;  1") 

= n s l (] (~(v~)[hs(r~,..., r~) 
i = 1  j = l  

• Pij[6(1 - 1")~b-1(v1)- nc(rl, rl,,)] + nh~+ l(rl ..... r~, rv, ) - n  2 

• f drv,,hs+l(rl,...,rs, rl,,)c(rl,,,,rv,)] (A9) 

Substituting Eq. (A9) for s = 2, 3 .... into Eq. (AS) and then inserting the 
virial expansion for the various distribution functions, as given in 
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Eqs. (A1), (A5), and (A6), the cluster expansion for the Ws is readily 
obtained. The details are quite lengthy, but straightforward and are not 
given here. 

To lowest order in the density Ws is given by 

W~~ s)--= ~ Pli ~ ~(1)j) g~~ I ..... r,) (al0)  
i=1 j=2  

with g~O) given by Eq. (A3). The first few higher-order terms are given here 
only for s = 2, 

W(21~(1, 2)= (1 + P12) ~b(v2) g~l)(rl, r2) 

+ q~(v~)O(v2)[dl"[f~l,,fv,2+f~2f2v, fl,,~] Pll,, (Alia) d 

and 

W(22)(1, 2)= (1 + Pla) r g(22)(rl, r2) 
+ r r 

x fdl"[f31,,fv, l+f31,,f1,,2-q-fll,,fl,,2+O(f3)]P,v, (A1 lb) 

APPENDIX B: HOMOGENEOUS AND MARKOVIAN FORM OF 
THE BGL OPERATOR 

In this Appendix it is shown that in the limit z--. 0 + and k ~ 0 the 
generalized BGL operator given in Eq. (3.13) reduces to the Markovian 
form used in the literature for a homogeneous gas and given in Eq. (3.17). 
The derivation follows closely that presented in Ref. 17 for the nonlinear 
BGL operator. The terms in Eq. (3.13) containing static correlations are 
essential to recover the usual form, Eq. (3.17). 

Consider the action of Ak(Vl, z) given by Eq. (3.13) on a function 
Ak(Vl). The limit k ~ 0 of the operator may be taken from the onset, with 
the result 

Ao(vl, z) n~b(vl) Ak(Vl) 

/7 2 

(--~3g) 31;q QV l z--iq'v,2--'U" q(Vl)--~q(V2) 

Ak(V2)}. • ~(/)1) ~(/)2) { ~ -  q ' ~V1Ak(V1) -- I ; -  q " Or-- ~ 

SDH(q) 

(B1) 
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The imaginary part of z can be set equal to zero in Eq. (B1); the limit 
z ~ 0  + is intended here and below. To proceed, it is convenient to 
introduce the Green's function of the Vlasov equation, defined as the 
solution of 

and given by 

i q ' v l -  u/q(vi)] Uq(u t[ v1,, 0) : 6(t) 6(Vl--Vl,) (B2a) 

f J+i~ dz 
Uq(vl, t I vl, , 0 )=  eZlUqz(Vl [ vv) (B2b) 

_ i~ 2~i 

for Rez > 0, with 
1 

tg(vl  - vl,) Uqz(Vl ] v v ) - z + i q . v l  

1 1 
+[Sq'~---~nO(Vl)]D(q,z)z+iq.vl,} (B2c) 

where D(q, z) is the plasma dispersion function, defined in Eq. (3.16b). The 
contour of integration in Eq. (B.2b) is a vertical line in the complex 
z plane, with 7 > 0, located to the right of all singularities of the integrand. 
Equation (B1) can be written 

A0(Vl, z) n0(u1) Ak(u 

n2f  dq fTl+i~176 2 1 
= m --7 ~ ~,-ioo ~ 2 ioo 2rciz--(zl+z2) 

0 f dv2dvI'dv2'SDH(q) X g q ' ~ y  1 

X U qzl(v I Iv1,) gqz2(V2 Iv2,)0(/)1 ,) 0(/)2 ,) 

[ 8 8 Ak(V2,)] (B3) X ~ q" ~VI' Ak(V1, ) + ~q' Oy2"--- ~ 

with R e ( z -  (z I + z2)) > 0. The v2 integration may be performed, using 

1 1 ( B 4 )  
f dv2 z2 + iq" v2, D(qz2) Uqz2(V2 I u 

Also it is convenient to define the following functions: 

f 1 d(q ,  z) = dv z + iq "----~ nO(v) (B5) 
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and 

b ( q , z ) =  1 - f  dv 1 ~v z + i q ~  nO(v) eq" Ak(v) (B6) 

for Rez>0. We assume that the unknown function Ak(Vl) is such that 
/5(q, z) has the same analytic properties as D(q, z), i.e., /5(q, z ) r  for 
Rez >0  and all q r  Making use of the above definitions and of the 
explicit form of the Vlasov propagators, Eq. (B3) may be written as 
follows: 

Ao(Vl, z) n0(vl)  Ak(Vl) 

1 [ dq SDH(q) c~f'/,+i~dzls +im 
N y,-,oo 2rti ,2-,~o 

dz 2 1 1 1 
x - -  

2rri z - (zl + z2) Zm - iq'vl D(R, z2) 

x d(q ,  z2) nO(v]) ~ �9 av~Ak(vl)-l--r/r --/)(q, z2) ] 

~v~ 1 [d(q ,  z2)(t - / ) ( - -q ,  z,)) +e-q"  nO(Vl) D(_q ,  zt) 

+ ~ ( - q ,  z~)(1 - ZS(q, z2))]} (B7) 

We now define the analytic continuation of the functions sr D, and / )  to 
Rez < O. This will give us more freedom in dealing with the contours of 
integration. Such analytic continuations are given for Rez < 0 by 

S~ ( q , z ) = f d v  1 nO(v)_2zci ldva(z+iq.v)nO(v ) 
z + i q ' v  

D _ (q,  z )  = 1 - dv z + iq -----~ l~q "~'VV/7~(U) 

-- 2r t i fdva(z+iq .v )g  0_ av he(V) 

/5 (q, z )= 1 - f  d v - -  z + iq" v nO(v) ~q' Ak(V) 

1 r 
- 2~i | dv6(z + iq" v) nr aq "x-- A k ( v )  

d GV 

(B8a) 

(BSb) 

(B8c) 
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By letting z = i o _ e  in Eqs. (B8) and using that the singular function 
lim~o+(e + ix) -1 can be written as the sum of a 6 function and a Cauchy 
principal value, it can be easily verified that the functions of Eqs. (B8) and 
those defined in Eqs. (316b) and (B5), (B6) are the same in the limit 
8 ---+ 0 + 

The Zl integration may be performed in the first two terms in curly 
brackets in Eq. (B7) by closing the contour to the left (where the only 
singularity is the pole Zl = z-z2) .  Similarly in the third term in the curly 
brackets the z2 integration is performed by closing the contour to the left. 
The result is 

Ao(Vl, z) r/q~(ol) Ak(u 

 fdq 
= m---f ~ Snn(q) 

X 

-4- s l-ioo 2rcizl-- 

1 
X 

D ( q , z - z l ) D ( - q ,  zl) 

. ~ ~f72-F i~ dz2 1 1 

~q ~u ~y2--ioo 27ziz--z2--iq'vl D(q, z2) 

-/5(q, z2))] d(q ,  Z2) he(V1) ~ q" ~u Ak(Vl)+ nq~(Vl) (1 

1 
iq. vl 

x [-d(q, z-- zl)(1 - D ( - - q ,  z l ) )+  d ( - q ,  zl)(1 -D(q ,  z -  zl))] t 

(B9) 
The residual z2 integration in the first term in Eq. (B9) can now be perfor- 
med by closing the contour to the right. To perform the z 1 integration in 
the second term, it is convenient to push the contour of integration against 
the real axis, by letting z I ~ /'gO + 11, where ~ ~ 0 + is intended. The result is 

Ao(vl, z) n•(vl) Ak(Vl) 

( 2 ~ )  3 8 ~d (q , - - iq ' v l )  . .  , ~vl = S f SDH(q)~q'~vl (~(q, --iq'vl) nfD[vl)~-q" Ak(Vl) 

1 --/)(q, - iq" vl 
Z)('-~ --'-/~-' V;') ) n~(U1) q 

2~r /+ im- - iq ' v l  t;_q' nq~(Vl) 

1 2Re[sO(q, ira)(1 --/)(--q, ir~))] t (B10) • ID(q, -i~)1 ~ 
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where use has been made of the property F(q, - ico)=  [F ( -q ,  ico]*, where 
the star indicates complex conjugation and F is any of the functions ~', D, 
and /5. Changing q into - q  and carrying out the (~ integral, Eq. (B10) 
becomes 

Ao(vl, 0) nfk(Vl) Ak(Vl) 

= ml__5 f dq 0 1 
SDH(q) eq "0VI ]D(q, --iq" vl)] 2 

• {Re[D(-q ,  iq' Vl)~q'(q,--iq" Vl) ] nq~(vl) ~;_q ' ~ v  1 Ak(Vl) 

+ ilmf-D(-q, iq' vl)(1 -/5(q, - i q  vl))] n4(vx) 

a n~b(vl 1} (Bll)  + ReEd(q, - i q  �9 v~)(1 - /5 (  -q ,  iq �9 Vm))] ~ q" (~y----~ 

The real and imaginary part of the functions appearing in Eq. (B11) can be 
evaluated by using Eqs.(B8) for z=e+iq ' v l  and letting a--,0 +. 
Equation (B11) becomes then 

A0(v 1, 0) n(~(vl) Ak(u 

7c ~ dq O V~q SDH(q)(1 +nflVq) 
= m-~ J (-~)3 q" 0v~ ID(q, - iq 'v~)l  2 

x f dvz3(q" v12 ) nr nr 

with 

• 0-v-~ ~2  (l+P12)Ak(Vl) (B12a) 

D(q' - i q ' v l ) =  l +-- d v 2 - -  q n~(v2) 

iTc 

where P denotes the Cauchy principal part of the integral. Finally, using 
1 +nflVq= [Son(q)] 1, Eq. (B12a) reduces to Eq. (3.16). We remark that 
the same Eq. (B12) would also have been obtained if we had neglected the 
functions 0q in Eq. (3.13). Again, this is due to the fact that the Markovian 
limit of the BGL operator conserves kinetic energy. 
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